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Abstract— Wind power prediction is one of the most critical aspects in wind power integration and operation. This paper proposes a new 
approach for wind power prediction. The proposed method is derived by integrating the kernel principal component analysis (KPCA) 
method with the locally weighted group method of data handling (LWGMDH) which can be derived by combining the GMDH with the local 
regression method and weighted least squares (WLS) regression. In the proposed model, KPCA is used to extract features of the inputs 
and obtain kernel principal components for constructing the phase space of the multivariate time series of the inputs. Then LWGMDH is 
employed to solve the wind power prediction problem. The coefficient parameters are calculated using the WLS regression where each 
point in the neighborhood is weighted according to its distance from the current prediction point. In addition, to optimize the weighting 
function bandwidth, the weighted distance algorithm is presented. The proposed model is evaluated using real world dataset. The results 
show that the proposed method provides a much better prediction performance in comparison with other models employing the same data. 

Index Terms— Wind power prediction, group method of data handling, local predictors, locally weighted group method of data handling, 
weighted distance, kernel principal component analysis, state space reconstruction.  

——————————      —————————— 

1 INTRODUCTION                                                                     
IND power is the fastest growing power generation 
sector in the world nowadays. The output power of 
wind farms is hard to control due to the uncertain and 

variable nature of the wind resources. Hence, the integration 
of a large share of wind power in an electricity system leads to 
some important challenges to the stability of power grid and 
the reliability of electricity supply [1]. Wind power prediction 
is one of the most critical aspects in wind power integration 
and operation. It allows scheduled operation of wind turbines 
and conventional generators, thus achieves low spinning re-
serve and optimal operating cost [2]. 

Short term prediction is generally for a few days, and 
hours to a few minutes, respectively. It is required in the gen-
eration commitment and market operation. Short term wind 
power prediction is a very important field of research for the 
energy sector, where the system operators must handle an 
important amount of fluctuating power from the increasing 
installed wind power capacity. Its time scales are in the order 
of some days (for the forecast horizon) and from minutes to 
hours (for the time-step) [3]. 

Various methods have been identified for short term wind 
power prediction. They can be categorized into physical 
methods, statistical methods, methods based upon artificial 

intelligence (AI) and hybrid approaches [4]. 
The physical method needs a lot of physical considera-

tions to give a good prediction precision. It is usually used for 
long term prediction [5]. While the statistical performs well in 
short term prediction [6].  

The traditional statistical methods are time-series-based 
methods, such as the persistence method [7], auto regressive 
integrated moving average (ARIMA) method [8], [9], etc. 
These methods are based on a linear regression model and can 
not always represent the nonlinear characteristics of the in-
puts. The AI methods describe the relation between input and 
output data from time series of the past by a non-statistical 
approach such as artificial neural network (ANN) [10], [11], 
fuzzy logic [7] and neuro-fuzzy [12]. Moreover, other hybrid 
methods [13], [14] have also been applied to short-term wind 
power prediction with success. 

Support vector regression (SVR) [15] has been applied to 
wind speed prediction with success [16]. SVR has been shown 
to be very resistant to the overfitting problem and gives a high 
generalization performance in prediction problems. SVR has 
been evaluated on several time series datasets [17]. 

The Group Method of Data Handling (GMDH) is a selfor-
ganizing method that was firstly developed by Ivakhnenko 
[18].The main idea of GMDH is to build an analytical function 
in a feedforward network based on a quadratic node transfer 
function whose coefficients are obtained using a regression 
technique [19]. GMDH has been applied to solve many predic-
tion problems with success [20], [21]. 

All the above techniques are known as global time series 
predictors in which a predictor is trained using all data availa-
ble but give a prediction using a current data window. The 
global predictors suffer from some drawbacks which are dis-
cussed in the previous work [22]. 
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The local SVR method is proposed by us to overcome the 
drawbacks of the global predictors [22]. More details of the 
local predictor can be found in [22]. Phase space reconstruc-
tion is an important step in local prediction methods. The tra-
ditional time series reconstruction techniques usually use the 
coordinate delay (CD) method [23] to calculate the embedding 
dimension and the time delay constant of the time series [24]. 

The traditional time series reconstruction techniques have 
a serious problem. In which there may be correlation be-
tweendifferent features in reconstructed phase space. Conse-
quently, the quality of phase space reconstruction and model-
ling will be affected [25]. In recent years, to process nonlinear 
time series, the kernel principal component analysis (KPCA) 
which is one type of nonlinear principal component analysis 
(PCA) is used [26]. KPCA is an unsupervised technique that is 
based on performing principal component analysis in the fea-
ture space of a kernel. The main idea of KPCA is first to map 
the original inputs into a high-dimensional feature space via a 
kernel map, which makes data structure more linear, and then 
to calculate principal components in the high-dimensional 
feature space [25]. 

Moreover, our previous work on local SVR predictor is ex-
tended to locally weighted support vector regression 
(LWSVR) by modifying the risk function of the SVR algorithm 
with the use of locally weighted regression (LWR) while keep-
ing the regularization term in its original form [27], [28]. 
LWSVR has been applied to solve short term load forecasting 
(STLF) problem [27], [28]. Although LWSVR method improves 
the accuracy of STLF, it suffers from some limitations. First, 
the most serious limitation of SVR algorithm is uncertain in 
choice of a kernel. The best choice of kernel for a given prob-
lem is still a research issue. The second limitation is the selec-
tion of SVR parameters due to the lacking of the structural 
methods for confirming the selection of parameters efficiently. 
Finally, the SVR algorithm is computationally slower than the 
artificial neural networks. 

To avoid the limitations of the existing methods and in 
order to follow the latest developments to have a modern sys-
tem, a new method is proposed in this paper using an alterna-
tive machine learning technique which is called GMDH. 

The proposed method is derived by combining the 
GMDH with the local regression method and weighted least 
squares regression and employing the weighted distance algo-
rithm which uses the Mahalanobis distance to optimize the 
weighting function’s bandwidth. In the proposed model, the 
phase space is reconstructed based on KPCA method, so that 
the problem of the traditional time series reconstruction tech-
niques can be avoided. The proposed method has been evalu-
ated using real world dataset. 

The paper is organized as follows: Section 2 describes the 
time series reconstruction based on KPCA method. Section 3 
reviews the GMDH algorithm. The LWGMDH method is in-
troduced in Section 4. Section 5 describes the weighted dis-
tance algorithm. Experimental results and comparisons with 
other methods are presented in Section 6. Finally, Section 7 
concludes the work. 

2 TIME SERIES RECONSTRUCTION BASED ON KPCA 
The PCA is a well-known method for feature extraction 

[29]. It involves the computations in the input (data) space so 
it is a linear method in nature. KPCA is an unsupervised tech-
nique that is based on performing principal component analy-
sis in the feature space of a kernel. KPCA can be used to re-
construct the time series, on the basis of which some kernel 
principal components are chosen according to their correlative 
degree to the model output to form final phase space of the-
nonlinear time series. 

In KPCA the computations are performed in a feature 
space that is nonlinearly related to the input space. This fea-
ture space is that defined by an inner product kernel in ac-
cordance with Mercer’s theorem [30]. Due to the nonlinear 
relationship between the input space and feature space the 
KPCA is nonlinear. However, unlike other forms of nonlinear 
PCA, the implementation of KPCA relies on linear algebra by 
mapping the original inputs into a high-dimensional feature 
space via a kernel map, which makes data structure more line-
ar. 

The basic idea of KPCA is to map the data x into a high 
dimensional feature space Φ(𝑥)  via a nonlinear mapping, 
and perform the linear PCA in that feature space:  
 
             )()(),( jiji xxxxQ Φ⋅Φ=                         (1) 
 
where xi and xj are variables in input space and 𝑄�𝑥𝑖 ,𝑥𝑗� is 
called kernel function.   

Given a set of data 𝑋 = {𝑥𝑖}𝑖=1𝑁  where each 𝑥𝑖  ∈  ℜ𝑛, we 
have a corresponding set of feature vector {Φ(𝑥𝑖)}i=1N .  
Accordingly, the sample covariance matrix Φ(𝑥𝑖) can be de-
fines as follows: 
  
                                                                                                          (2) 
 
As in PCA method, we have to ensure that the set of feature 
vectors {Φ(𝑥𝑖)}i=1N  have zero mean [31]: 
 
 
                                                                                            (3)    
 

Proceeding then on the assumption that the feature vectors 
have been centered, KPCA solves the eigenvalues (4): 
 
               𝜆𝑖𝑣𝑖 = 𝐶𝑣𝑖,     i=1,2,….., N                                 (4) 
 
where 𝜆𝑖 is one of the non-zero eigenvalues of 𝐶  and 𝑣𝑖 is the 
corresponding eigenvectors. Because the eigenvectors 𝑣𝑖 in the 
plane which is composed of Φ(𝑥1),Φ(𝑥2), … . .Φ(𝑥𝑁). Therefore 
[25]:   
  
              𝜆𝑖𝛷(𝑥𝑖) ∙ 𝑣𝑖 = Φ(𝑥𝑖) ∙ 𝐶𝑣𝑖,      i=1,2,….., N                     (5) 
 
And the exist coefficient α meet: 
 
                                                                                            (6) 
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Substituting (2) and (6) into (4) and defining an 𝑁 × 𝑁 matrix 
Q which is defined by (1), the following formula can be got 
[30]: 
 
 
                                                                                                          (7) 
                                                                                          
 
Eq. (7) can be written in the compact matrix form [30]: 
 
             αλα QN =                                                           (8) 
 

Assuming the eigenvectors of )( ixΦ is of unit length vi. 
1=iv , each αi  must be normalized using the corresponding eigen-

value by: . 
 
Finally the principal component for xi, based on iα

~ , can be 
calculated as following: 
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From (9), one can notice that the maximal number of prin-

cipal components that can be extracted by KPCA is N. The 
dimensional of pt can be reduced in KPCA by considering the 
first several eigenvectors that is sorted in descending order of 
the eigenvalues.  

In this paper, we can employ the commonly used Gaussian 
kernel defined as: 

 
                                                                                          (10) 

3 GROUP METHOD OF DATA HANDLING (GMDH) 
Suppose that the original dataset consists of M columns of 

the values of the system input variables that is 
NttxtxtxX M ,...,2,1()),(),.....,(),(( 21 == and a column of the 

observed values of the output and N is the length of the da-
taset. 

The connection between inputs and outputs variables can 
be represented by a finite Volterra-Kolmogorov-Gabor poly-
nomial of the form: 
 

                                                                                                  (11) 
 
Where N is the number of the data of the dataset, A(a0, ai, aij, 
aijk,…..) and X(xi, xj, ak,…..) are vectors of the coefficients and 
input variables of the resulting multi-input single-output sys-
tem, respectively. 

In the GMDH algorithm, the Volterra-Kolmogorov-Gabor 
series is estimated by a cascade of second order polynomials 
using only pairs of variables [18] in the form of: 
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The corresponding network as shown in Fig. 1 can be con-

structed from simple polynomial. As the learning procedure 
evolves, branches that do not contribute significantly to the 
specific output can be deleted; this allows only the dominant 
causal relationship to evolve.  

The GMDH network training algorithm procedures can be 
summarized as follows: 

• GMDH network begins with only input nodes and all 
combinations of different pairs of them are generated 
using a quadratic polynomial using (Eq. 12) and sent 
into the first layer of the network. The total number of 
polynomials (nodes) that can constructed is equal to 
M(M-1)/2.  

• Use list squares regression to compute the optimal 
coefficients of each polynomial (node) 

),,,,( 54310 aaaaaA to make it best fit the training data 
as following: 
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Fig. 1. GMHD network   
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and  
• Compute the mean squared error for each node (Eq. 

13). 
•  Sort the nodes in order of increasing error. 
• Select the best nodes which give the smallest error 

from the candidate set to be used as input into the 
next layer with all combinations of different pairs of 
them being sent into second layer. 

• This process is repeated until the current layer is 
found to not be as good as the previous one. There-
fore, the previous layer best node is then used as the 
final solution. 

More details about the GMDH and its different applications 
have been reported in [19, 31]. 

4 LOCALLY WEIGHTED GROUP METHOD OF DATA 
HANDLING (LWGMDH) 

 
The LWGMDH method is derived by combining the 

GMDH with the local regression method and weighted least 
squares (WLS) regression. To predict the output values ŷ for 
each query point (    ) belongs to the testing set, the GMDH 
will be trained using the K nearest neighbors only (1 < K << N) 
of this      . The coefficient parameters is calculated using WLS 
regression where each point in the neighborhood is weighted 
according to its distance from the       . The points that are close 
to      have large weights and the points far from       have small 
weights 

Overall, the framework of the design procedure of the 
LWGMDH comes as a sequence of the following steps. 
• Step 1: Reconstruct the time series: load the multivariate 

time series dataset ))(.......(),(( ..),21 txtxtxX M= , (t=1,2, 
…, N). Using the KPCA method to calculate the number of 
principal components of each dataset (we set the time de-
lay constant of all datasets equal to 1). Then, reconstruct 
the multivariate time series using these values. 

• Step 2: Form a training and validation data: The input da-
taset after reconstruction x~  is divided into two parts, that 
is a training trx~ dataset and validation vax~  dataset the size 
of the training dataset is trN while the size of the valida-
tion dataset is vaN . 

• Step 3: For each query point qx , choosing the K nearest 
neighbors of this query point using the Euclidian distance 
between qx  and each point in )1(~

trtr NKX <<< . 
• Step 4: Create the first layer: using the K nearest neighbors 

only, all combinations of the inputs are generated based on 
(Eq. 12) and sent into the first layer of the network.    

• Step 5: Estimate the coefficient parameters of each node: 
the vector of coefficient A is derived by minimizing the lo-
cally weighted mean squared error 
 

                                                                                        (15) 
 

 
 

where w is the weighting function. Meany weighting func-
tions are proposed by the researchers [32]. Out of theses 
weighting functions, Gaussian kernel, tricube kernel and 
quadratic kernel are the most popular [32]. In this work, we 
employ the commonly used Gaussian kernel weighting 
function as following: 

 
 
                                                                                         (16) 
 

where      is the query point, ix is a data point belongs the 
nearest neighbors points of       and h is the band width pa-
rameters which plays an important role in local modeling. 
An optimization method for the bandwidth is discussed in 
the next section in the paper. The weighted best square so-
lution of (Eq. 15) is given by: 

 
             )()())()(( 1 WyWXWXWXA TT −=                    (17) 
 

where W is the diagonal matrix with diagonal elements 
iii wW = and zeros elsewhere [32], T

Kyyyy ]...,,,[ 21= , 
],,,,,[ 543210 aaaaaaA = , X is defined in the last section 

but with number of rows equal to K (the number of the 
nearest) neighbors. This procedure is implemented repeat-
edly for all nodes of the layer.  

• Step 6: Select the nodes with the best predictive capability 
to create the next layer: Each node in the current layer is 
evaluated using the training and validation datasets. Then 
the nodes which gives the best predictive performance for 
the output variable are chosen for input into the next layer 
with all combinations of the selected nodes based on (Eq. 
12) being sent into next layer. In this paper, we use a pre-
determined number of these nodes. The coefficients pa-
rameters of each node in this layer can be estimated using 
the same procedures in step (5).  

• Step 7: Check the stopping criterion: The modeling can be 
terminated when:  

           ll ee ≥+1                                               (18) 
 

where 1+le is the minimal identification error of the current 
layer while le is a minimal identification error of the pre-
vious layer. So that the previous layer (l) best node is then 
used as the final solution of the current query point. If the 
stooping criterion is not satisfied, the model has to be ex-
pended. The steps 6 to 7 can be repeated until the stooping 
criterion is satisfied.  

• Step 8: Then, the steps 3 to 7 can be repeated until the fu-
ture values of different query points are all acquired.  

Fig. 2 presents the computation procedure of the proposed 
method. 
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WEIGHTED DISTANCE ALGORITH FOR 
OPTOMIZING THE BANDWIDTH 

 

 

5 WEIGHTED DISTANCE ALGORITHM FOR OPTIMIZING 
THE BANDWIDTH 
The weighting function bandwidth (h) is a very important 

parameter which plays an important role in local modeling. If 
h is infinite then the local modeling becomes global. On the 
other hand, if h is too small, then it is possible that we will not 
have an adequate number of data points in the neighborhood 
for a good prediction.  

There are several ways to use this parameter like, constant 
bandwidth selection, nearest neighbor bandwidth selection 
where h is set to be a distance between the query point and the 
Kth nearest point, global bandwidth selection where h is calcu-
lated globally by an optimization process, etc [32].  

The constant bandwidth selection method where training 
data with constant size and shape are used is the easiest and 
common way to adjust the radius of the weighting function. 
However, its performance is unsatisfactory for nonlinear sys-

tem as density and distribution of data points are unlikely to 
be identical very place of the data set [33]. In this paper, we 
used the weighted distance algorithm which uses the Ma-
halanobis distance metric for optimizing the bandwidth (h) to 
improve the accuracy of our proposed method. 

With the Mahalanobis distance metric, the problem of scale 
and correlation inherent in Euclidean distance are no longer 
an issue. In the Euclidean distance, the set of points which 
have equal distance from a given location is a sphere. The Ma-
halanobis distance metric stretches this sphere correct for the 
respective scales of the different variables.  

 The standard Mahalanobis distance metric can be defined 
as: 

 
                                                                                             (19)  
 
where x is the vector of data, µ is a mean and 1−S  is in-

verse covariance matrix.  
Defining the Mahalanobis distance metric between the 

query point       and data point x as   
where x  belongs to the K nearest neighbors of the query point  
      and 1−S is computed after removing the main form each-
column, the bandwidth is     the function of       :  

  
                                                                        (20) 
 
where                                  and           is the distance between 
    and closest neighbor whileis         is the distance between 

         and the farthest neighbor.  
According to the LWR method, the query corresponding to 
              is most important that is                                 while 

the query point corresponding to               is the least im-
portant, that is                                     is a real constant. This con-
stant is a low sensitivity parameter. Therefore after few trails, 
we fix it to 0.01 which gives the best results.  

The bandwidth     can be selected as a function of       as fol-
lows [33]: 

 
                                                                                             (21) 
 

where a, b and c are constants. By applying the boundary con-
ditions, we can calculate these constants and get [33]: 

 
 
                                                                                        (22) 
 
 
The Gaussian kernel weighting function which used in this 

paper can be written as following: 
 

             (23) 
 

  

 

 
Fig. 2. Flowchart of the proposed method 
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6 EXPREMENT RESULTS 
6.1 Data 

To evaluate the performance of the proposed method, it 
has been tested for wind power prediction using the real data 
from wind farms in Alberta, Canada [34]. Alberta has the 
highest percentage of total installed wind generation capacity 
of any province in Canada. There are more than 40 wind pro-
jects proposed for future development in Alberta. Alberta in-
cludes many wind farms such as Ghost pine wind farm (own-
ing 51 turbines and 81.6 MW total capacity), Taber wind farm 
(owning 37 turbines and 81.4 MW total capacity), Wintering 
Hills wind farm (owning 55 turbines and 88 MW total capaci-
ty), etc [35]. The total wind power installed capacity in 2011 is 
800MW. This value will be raised to 893 MW by the most re-
sent governmental goals for the wind sector in 2012 [35].  

6.2 Parameters 
To implement a good model, there are some important pa-

rameters to choose. There are two important parameters in the 
KPCA algorithm which used to reconstruct the phase space 
these parameters are the number of principal components (nc) 
and w2 in the Gaussian kernel function. The optimal values of 
these parameters which computed using the cross validation 
method are w2=1.9 and nc=10.  

In the local prediction model, choosing the neighborhood 
size (K) is very important step. So, this parameters is calculat-
ed as describe in [27] where kmax and β are always fixed for all 
test cases at 45% of N and 80, respectively.   

6.3 Forcasting Accuracy Evaluation 
For all performed experiments, we quantified the predic-

tion performance with root mean square error (RMSE) and 
normalized mean absolute error (NMAE) criterion. They can 
be defined as: 

  
                                                                                    (24) 
 
 
                                                                                    (25) 

 
 
where hp̂  and hp are forecasted and actual electricity prices at 
hour h, respectively, instp is the installed wind power capacity 
and N is the number of forecasted hours.  

6.4 Results and Discussion 
The proposed LWGMDH method has been applied for the 

prediction of the whole wind power in Alberta, Canada. The 
performance of the proposed method in compared with 3 pub-
lished approaches employing the same dataset. These ap-
proaches are resistance, seasonal ARIMA (SARIMA) and local 
radial basis function (LRBF). Historical wind power data are 
the only inputs for training the proposed method. For the sake 
of clear comparison, no exogenous variables are considered.  

The proposed LWGMDH method predicts the value of the 
wind power subseries for one day ahead, taking into account 
the wind power data of the previous 3 months (the first 80% 
values of these data are used for training, while the last 20% 

values are used for validation). The length of the forecast hori-
zon for the Alberta dataset is 24 hours. Four test weeks (Mon-
day to Sunday) corresponding to four seasons of year 2011 are 
randomly selected for this numerical experiment. These test 
weeks are: the second week of February 2011 as a winter 
week, the third week of May 2011 as a spring week, the second 
week of August 2011 as a summer wee, and the first week No-
vember 2011 as a fall week. 

The error (RMSE) and (NMAE) of each day during each 
testing week is calculated. Then the average error of each test-
ing week (Monday to Sunday) is calculated by averaging the 
seven error values of its corresponding forecast days. Finally, 
the overall mean performance for the four testing weeks for 
each method can be calculated. 

Table 1 shows a comparison between the proposed 
LWGMDH method and three other approaches (persistence, 
SARIMA and LRBF), reading the RMSE criterion. These re-
sults show that the proposed method outperforms other 
methods. Table 2 shows the RMSE improvements of the 
LWGMDH method over persistence, SARIME and LRBF. Ta-
ble 3 shows a comparison between the proposed LWGMDH 
method and three other approaches (persistence, SARIMA and 
LRBF), regarding the NMAE criterion. These results show the 
superiority of the proposed method over other methods. Table 
4 shows the NMAE improvements of the LWGMDH method 
over persistence, SARIMA and LRBF. 

  

 

 
 
 

TABLE 1 
COMPARATIVE RMSE RESULTS 

 Winter Springs Sum-
mer 

Fall Aver-
age 

Persistence 13.71 16.19 14.42 22.99 16.83 
SARIMA 6.70 6.59 8.09 13.88 8.82 

LRBF 5.03 4.85 4.76 6.97 5.40 
LWGMDH 4.01 3.90 3.72 5.32 4.24 

 
TABLE 2 

IMPROVEMENT OF THE LWGMDH OVER OTHER APPROACHES 
REGARDING RMSE 

 Average RMSE Improvement 
LWGMDH 4.24 -- 
Persistence 16.83 74.81% 
SARIMA 8.82 51.93% 

LRBF 5.40 21.48% 
 

TABLE 3 
COMPARATIVE NMAE RESULTS 

 Winter Springs Sum-
mer 

Fall Aver-
age 

Persistence 6.59 7.66 7.51 11.07 8.21 
SARIMA 3.21 3.09 3.84 6.53 4.17 

LRBF 2.38 2.31 2.20 3.26 2.54 
LWGMDH 1.94 1.85 1.71 2.48 1.99 
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Figs. 3- 6 show the predicted hourly wind power versus the 

actual wind power of one day (as an example) of each testing 
week using the proposed LWGMDH method. These results 
show that our prediction values are very close to the actual 
values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

The above results indicate that the proposed LWGMDH 
method is less sensitivity to the wind power volatility than the 
other techniques used in the comparison. 

To further study the superiority of LWGMDH method, it is 
also executed for all 52 weeks of year 2011 for the Alberta da-
taset and compared with three other approaches (Persistence, 
SARIMA and LRBF). The results show that the proposed 
LWGMDH method improves the RMSE and NMAE for the 52 
weeks of year 2011 over the Persistence, SARIMA and LRBF 
methods.  

Table 5 shows the RMSE and NMAE improvements of the 
LWGMDH method over Persistence, SARIMA and LRBF. In 
addition, Fig. 7 shows the comparison between LWGMDH 
method and Persistence, SARIMA and LRBF methods for each 

TABLE 4 
IMPROVEMENT OF THE LWGMDH OVER OTHER APPROACHES 

REGARDING NMAE 
 Average RMSE Improvement 

LWGMDH 1.99 -- 
Persistence 8.21 75.76% 
SARIMA 4.17 52.28% 

LRBF 2.54 21.65% 
 

 

 

Fig. 3 Forecasted and actual hourly wind power for February 9, 2011 

 

 

Fig. 4 Forecasted and actual hourly wind power for May 17, 2011 

 

 

Fig. 5 Forecasted and actual hourly wind power for August 11, 2011 

 

 

Fig. 6 Forecasted and actual hourly wind power for November 3, 2011 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013                                                                    1223 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

month of year 2011 regarding RMSE criterion. Same results 
can be got using the NMAE criterion. 

These results show the robustness of the proposed 
LWGMDH method and its performance in a long run for a 
complete year. 

 

 

 

 

 

 

 

7 CONCLUSION 
In this paper, we have proposed a LWGMDH based KPCA 

method for wind power prediction. In the proposed method, 
the KPCA method is used to reconstruct the time series phase 
space and the neighboring points are presented by Euclidian 
distance for each query point. These neighboring points only 
can be used to train the GMDH where the coefficient parame 
ers are calculated using the weighted least square (WLS) regres-
sion. In addition, the weighting function’s bandwidth which 
plays a very important role in local modelling is optimized by 
the weighted distance algorithm. 

By using the KPCA the drawback of the traditional time 
series reconstruction techniques can be avoided by decreasing 
the correlation between different features in reconstructed 
phase space. Also, by combining GMDH with the local regres-
sion method the drawbacks of global methods can be over-
come. In addition, by using the WLS, each point in the neigh-
borhood is weighted according to its distance from the current 
query point. The points that are close to the current query 
point have larger weights than others. Moreover, by using the 
weighted distance algorithm, the disadvantage of using the 
weighting functions bandwidth as a fixed value can be over-

come. This has led to improve the accuracy of the proposed 
model. 

A real world dataset has been used to evaluate the perfor-
mance of the proposed model which has been compared with 
Persistence, SARIMA and LRBF methods. The numerical re-
sults show the superiority of the proposed model over Persis-
tence, SARIMA and LRBF methods based on different measur-
ing errors. 

ACKNOWLEDGMENT 
The authors gratefully acknowledge the Taif University for its 
support to carryout this work. It funded this project with a 
fund number 2742-434-1. 

REFERENCES 
 
[1] M. Mazadi, et al., “Impact of Wind Integration on Electricity Markets: a 

Chance-constrained Nash Cournot Model,” Int. Trans. on Electrical Energy 
Systems, vol. 23, no. 1, pp. 83–96, 2013. 

[2] M. Khalid and A. Savkin, “A Method for Short-term Wind Power Prediction 
with Multiple Observation Points,” IEEE Trans. Power Systems, vol. 27, no. 2, 
pp. 579–586, 2012. 

[3] H.M. I. Pousinho, V.M.F. Mendes, and J.P S. Catalo, “A hybrid PSO ANFIS 
Approach for Short-term Wind Power Prediction in Portugal,” Energy Con-
version and Management, (In press.) 

[4] M. Negnevitsky, P. Mandal, and A.K. Srivastava, “Machine Learning Appli-
cations for Load, Price and Wind Power Prediction in Power Systems,” Proc. 
of 15th Int. Conf. on Intelligent Syst. Appl. to Power Syst., Nov.8–12,  pp. 1–6, 
2009. 

[5] L. Wang, L. Dong, Y. Hao, and X. Liao, “Wind Power Prediction Using Wave-
let Transform and Chaotic Characteristics,” Proc. of World Non-Grid-
Connected Wind Power and Energy Conf., (WNWEC 2009), Sept.24–26, pp. 
1–5, 2009. 

[6] L. Ma, et al., “A Review on the Forecasting of Wind Speed and Generated 
Power,” Renew. Sust. Energy Rev., vol. 13, no. 4, pp. 915–920, May 2009. 

[7] G. Sideratos and N. Hatziargyriou, “Using Radial Basis Neural Networks to 
Estimate Wind Power Production,” Proc. of Power Eng. Soc. General Meet-
ing, Tampa, FL, June24–28, pp. 1–7, 2007. 

[8] W. Jiang, Z. Yan, D. Feng, and Z. Hu, “Wind Speed Forecasting Using Auto-
Regressive Moving Average/Generalized Autoregressive Conditional Heter-
oscedasticity Model,” European Transactions on Electrical Power, vol. 22, no. 
5, pp. 662–673, 2012. 

[9] R.G. Kavasseri and K. Seetharaman, “Day-ahead Wind Speed Forecasting 
Using F-ARIMA Models,” Renew. Energy, vol. 34, no. 5, pp. 1388–1393, May 
2009. 

[10] N. Amjady, F. Keynia, and H. Zareipour, “Wind Power Prediction by a New 
Forecast Engine Composed of Modified Hybrid Neural Network and En-
hanced Particle Swarm Optimization,” IEEE Trans. Sustainable Energy, vol. 2, 
no. 3, pp. 265–276, 2011. 

[11] K. Bhaskar and S. Singh, “AWNN-assisted Wind Power Forecasting Using 
Feed-Forward Neural Network,” IEEE Trans. Sustainable Energy, vol. 3, no. 
2, pp. 306–315, 2012. 

[12] C.W. Potter and W. Negnevitsky, “Very Short-term Wind Forecasting for 
Tasmanian Power Generation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 
965–972, May 2006. 

[13] N. Amjady, F. Keynia, and H. Zareipour, “A New Hybrid Iterative Method 
for Short-term Wind Speed Forecasting,” European Transactions on Electrical 

TABLE 5 
IMPROVEMENT OF THE LWGMDH OVER OTHER APPROACHES 

FOR ALL 52 WEEKS OF YEAR 2011 
 RMSE Improvement NMAE Improve-

ment 
LWGMDH -- -- 
Persistence 73.88% 75.35% 
SARIMA 51.19% 51.81% 

LRBF 20.29% 21.01% 
 

 

Fig. 7 RMSE Results for the Year Of 2011 IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013                                                                    1224 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

Power, vol. 21, no. 1, pp. 581–595, 2011. 
[14] S. Fan, et al., “Forecasting the Wind Generation Using a Two-stage Network 

Based on Meteorological Information,” IEEE Trans. Energy Convers., vol. 24, 
no. 2, pp. 474–482, 2009. 

[15] A. J. Smola and B. Scholkopf, “A Tutorial on Support Vector Regression,” 
NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, Uni-
versity of London, 1998. 

[16] D. Ying, J. Lu, and Q. Li, “Short-Term Wind Speed Forecasting of Wind Farm 
Based on Least Square-support Vector Machine,” Power Syst. Technology, 
vol. 32, no. 15, pp. 62–66, Aug. 2008. 

[17] M. Zhang, “Short-term Load Forecasting Based on Support Vector Machines 
Regression,” Proc. of the Fourth Int. Conf. on Machine Learning and Cyber., 
2005. 

[18] A.G. Ivakhnenko, “Polynomial Theory of Complex Systems,” IEEE Trans. of 
Syst., Man and Cyber., vol. SMC-1, pp. 364–378, 1971. 

[19] S.J. Farlow, “Self-organizing Method in Modeling: GMDH Type Algorithm, 
Marcel Dekker Inc., 1984. 

[20] D. Srinivasan, “Energy Demand Prediction Using GMDH Networks,” Neu-
rocomputing, vol. 72, pp. 625–629, 2008. 

[21] R.E. Abdel-Aal, M.A. Elhadidy, and S.M. Shaahid, “Modeling and Forecast-
ing the Mean Hourly Wind Speed Time Series Using GMDH-based Abduc-
tive Networks,” Renewable Energy, vol. 34, no. 7, pp. 1686–1699, 2009. 

[22] E.E. El-Attar, J.Y. Goulermas, and Q.H. Wu, “Forecasting Electric Daily Peak 
Load Based on Local Prediction,” Proc. IEEE Power Engineering Society Gen-
eral Meeting (PESGM09), pp. 1–6, 2009. 

[23] F. Takens, “Detecting Strange Attractors in Turbulence,” Lect. Notes in Math-
ematics (Springer Berlin), vol. 898, pp. 366–381, 1981. 

[24] D. Tao and X. Hongfei, “Chaotic Time Series Prediction Based on Radial Basis 
Function Network,” Proc. Eighth ACIS Int. Conf. on Software Engin., Artifi-
cial Intelligence, Networking, and Parallel/Distributed Computing, pp. 595–
599, 2007. 

[25] L. Caoa, et al., “A comparison of PCA, KPCA and ICA for Dimensionality 
Reduction in Support Vector Machine,” Neurocomputing, vol. 55, pp. 321–
336, 2003. 

[26] F. Chen and C. Han, “Time Series Forecasting Based on Wavelet KPCA and 
Support Vector Machine,” Proc. IEEE Int. Conf. on Automation and Logistics, 
pp. 1487–1491, 2007. 

[27] E.E. Elattar, J.Y. Goulermas, and Q.H. Wu, “Electric Load Forecasting Based 
on Locally Weighted Support Vector Regression,” IEEE Trans. Syst., Man and 
Cyber. C, Appl. and Rev., vol. 40, no. 4, pp. 438–447, 2010. 

[28] E.E. Elattar, J.Y. Goulermas, and Q.H. Wu, “Integrating KPCA and Locally 
Weighted Support Vector Regression for Short-term Load Forecasting,” Proc. 
the 15th IEEE Miditerranean Electrotechnical Conf. (MELECOn 2010), Vallet-
ta, Malta, Apr. 25–28, pp. 1528–1533, 2010. 

[29] J. Xi and M. Han, “Reduction of the Multivariate Input Dimension Using 
Principal Component Analysis,” Lect. Notes in Computer Science, vol. 4099, 
pp. 366–381, 2006. 

[30] S. Haykin, “Neural networks: A Comprehensive Foundation”, Printic-Hall, 
Inc., 1999. 

[31] A.G. Ivakhnenko and G.A. Ivakhnenko, “The Review of Problems Solved by 
Algorithms of the Group Method of Data Handling (GMDH),” Pattern 
Recognition and Image Analysis, vol. 5, pp. 527–535, 1995. 

[32] C.C. Atkeson, A.W. Moore, and S. Schaal, “Locally Weighted Learning,” 
Artificial Intelligence Review (Special Issue on Lazy Learning), vol. 11, pp. 11–
73, 1997. 

[33] H. Wang, C. Cao, and H. Leung, “An Improved Locally Weighted Regression 
for a Converter Re-vanadium Prediction Modeling,” Proc. the 6th World 
Congress on Intelligent Control and Automation, pp. 1515–1519, 2006. 

[34] Alberta Electric System Operator (AESO), Wind Power 
tion http://www.aeso.ca/gridoperations/13902.html. (2013) 

[35] Canadian Wind Power Association 
WEA).  http://www.canwea.ca/farms/wind-farms e.php. (2013) 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 IJSER

http://www.ijser.org/
http://www.aeso.ca/gridoperations/13902.html

	1 Introduction
	2 Time Series Reconstruction Based on KPCA
	3 Group Method of Data Handling (GMDH)
	(13)
	(14)
	and
	4 Locally Weighted Group Method of Data Handling (LWGMDH)
	WEIGHTED DISTANCE ALGORITH FOR OPTOMIZING THE BANDWIDTH
	5 Weighted Distance Algorithm For Optimizing The Bandwidth
	6 Exprement Results
	6.1 Data
	6.2 Parameters
	6.3 Forcasting Accuracy Evaluation
	6.4 Results and Discussion

	7 Conclusion
	Acknowledgment
	References



